FULLY WORKED SOLUTIONS

Chapter 5: Built for safety, built for speed

Review questions

7. (a)
$$v_{av} = 20 \text{ m s}^{-1}$$
, $t = 0.6 \text{ s}$
 $s_{\text{reaction}} = v_{av}t = 20 \times 0.6 = 12 \text{ m}$
(b) $u = 20 \text{ m s}^{-1}$, $a = -8.2 \text{ m s}^{-2}$
 $s_{\text{braking}} = \frac{-u^2}{2a} = \frac{-(20^2)}{2 \times -8.2} = 24.4 \text{ m}$
(c) $s_{\text{stopping}} = s_{\text{reaction}} + s_{\text{braking}} = 12 + 24.4 = 36.4 \text{ m}$

- 8. F_{drag} is proportional to v^2 . When the speed is increased from 60 km h⁻¹ to 100 km h⁻¹ (i.e. increased by a factor of 1.67), the drag will be increased by a factor of $(1.67)^2 = 2.78$. Thus, the drag at 100 km h⁻¹ = 2.78×300 N = 833 N
- 9. (a) This can be determined by substituting in values from the diagram. For example, when the speed is 60 km h⁻¹ the reaction distance is 25 m. $v_{av} = 60 \text{ km h}^{-1} = 16.7 \text{ m s}^{-1}$, $s_{reaction} = 25 \text{ m}$ $t = \frac{s_{reaction}}{v_{av}} = \frac{25}{16.7} = 1.49 \text{ s}$
 - (b) By substituting in values from the diagram, it can be found that the acceleration assumed was around -4.6 m s^{-2} (±0.1 m s⁻²). For example, when the speed was 50 km h⁻¹ (13.9 m s⁻¹), the braking distance was 21 m.

$$a = \frac{-u^2}{2s_{\text{braking}}} = \frac{-(13.9^2)}{2 \times 21} = -4.6 \text{ m s}^{-2}$$

(d) $t = 1.49 \text{ s}, a = -4.6 \text{ m s}^{-2}, v_{av} = u = 85 \text{ km h}^{-1} = 23.6 \text{ m s}^{-1}$ $s_{\text{reaction}} = v_{av}t = 23.6 \times 1.49 = 35.2 \text{ m}$ $s_{\text{braking}} = \frac{-u^2}{2a} = \frac{-(23.6^2)}{2 \times (-4.6)} = 60.5 \text{ m}$

 $s_{\text{stopping}} = s_{\text{reaction}} + s_{\text{braking}} = 35.2 + 60.5 = 95.7 \text{ m}$